百度太可恶了…..文章长度限制…这么厉害…..
哼…..我不贴内容了还不行么
源代码下载:点击下载
Read: 1117
百度太可恶了…..文章长度限制…这么厉害…..
哼…..我不贴内容了还不行么
源代码下载:点击下载
Read: 1117
转自:http://blog.csdn.net/coder0621/archive/2007/03/23/1539208.aspx
记得当初自己刚开始学习md5的时候,从网上搜了很多关于算法的原理和文字性的描述的东西,但是看了很久一直没有搞 懂,搜c的源代码又很少。直到后来学习rsa算法的时候,从网上下了1991年的欧洲的什么组织写的关于rsa、des、md5算法的c源代码(各部分代 码混在一块的,比如rsa用到的随机大素数就是用机器的随机时间的md5哈希值获得的)。我才彻底把md5弄明白了。这里的代码就是我从那里面分离出来 的,代码的效率和可重用性都是很高的。整理了一下希望对需要的朋友能够有帮助。
md5的介绍的文章网上很多,关于md5的来历,用途什么的这里就不再介绍了。这里主要介绍代码。代码明白了就什么都明白了。
////////////////////////////////////////////////////////////////////
/* md5.h */
#ifndef _MD5_H_
#define _MD5_H_
#define R_memset(x, y, z) memset(x, y, z)
#define R_memcpy(x, y, z) memcpy(x, y, z)
#define R_memcmp(x, y, z) memcmp(x, y, z)
typedef unsigned long UINT4;
typedef unsigned char *POINTER;
/* MD5 context. */
typedef struct {
/* state (ABCD) */
/*四个32bits数,用于存放最终计算得到的消息摘要。当消息长度〉512bits时,也用于存放每个512bits的中间结果*/
UINT4 state[4];
/* number of bits, modulo 2^64 (lsb first) */
/*存储原始信息的bits数长度,不包括填充的bits,最长为 2^64 bits,因为2^64是一个64位数的最大值*/
UINT4 count[2];
/* input buffer */
/*存放输入的信息的缓冲区,512bits*/
unsigned char buffer[64];
} MD5_CTX;
void MD5Init(MD5_CTX *);
void MD5Update(MD5_CTX *, unsigned char *, unsigned int);
void MD5Final(unsigned char [16], MD5_CTX *);
#endif /* _MD5_H_ */
///////////////////////////////////////////////////////////////////////////
/* md5.cpp */
#include "stdafx.h"
/* Constants for MD5Transform routine. */
/*md5转换用到的常量,算法本身规定的*/
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21
static void MD5Transform(UINT4 [4], unsigned char [64]);
static void Encode(unsigned char *, UINT4 *, unsigned int);
static void Decode(UINT4 *, unsigned char *, unsigned int);
/*
用于bits填充的缓冲区,为什么要64个字节呢?因为当欲加密的信息的bits数被512除其余数为448时,
需要填充的bits的最大值为512=64*8 。
*/
static unsigned char PADDING[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
接下来的这几个宏定义是md5算法规定的,就是对信息进行md5加密都要做的运算。
据说有经验的高手跟踪程序时根据这几个特殊的操作就可以断定是不是用的md5
*/
/* F, G, H and I are basic MD5 functions.
*/
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))
/* ROTATE_LEFT rotates x left n bits.
*/
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation.
*/
#define FF(a, b, c, d, x, s, ac) {
(a) += F ((b), (c), (d)) + (x) + (UINT4)(ac);
(a) = ROTATE_LEFT ((a), (s));
(a) += (b);
}
#define GG(a, b, c, d, x, s, ac) {
(a) += G ((b), (c), (d)) + (x) + (UINT4)(ac);
(a) = ROTATE_LEFT ((a), (s));
(a) += (b);
}
#define HH(a, b, c, d, x, s, ac) {
(a) += H ((b), (c), (d)) + (x) + (UINT4)(ac);
(a) = ROTATE_LEFT ((a), (s));
(a) += (b);
}
#define II(a, b, c, d, x, s, ac) {
(a) += I ((b), (c), (d)) + (x) + (UINT4)(ac);
(a) = ROTATE_LEFT ((a), (s));
(a) += (b);
}
/* MD5 initialization. Begins an MD5 operation, writing a new context. */
/*初始化md5的结构*/
void MD5Init (MD5_CTX *context)
{
/*将当前的有效信息的长度设成0,这个很简单,还没有有效信息,长度当然是0了*/
context->count[0] = context->count[1] = 0;
/* Load magic initialization constants.*/
/*初始化链接变量,算法要求这样,这个没法解释了*/
context->state[0] = 0x67452301;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;
}
/* MD5 block update operation. Continues an MD5 message-digest
operation, processing another message block, and updating the
context. */
/*将与加密的信息传递给md5结构,可以多次调用
context:初始化过了的md5结构
input:欲加密的信息,可以任意长
inputLen:指定input的长度
*/
void MD5Update(MD5_CTX *context,unsigned char * input,unsigned int inputLen)
{
unsigned int i, index, partLen;
/* Compute number of bytes mod 64 */
/*计算已有信息的bits长度的字节数的模64, 64bytes=512bits。
用于判断已有信息加上当前传过来的信息的总长度能不能达到512bits,
如果能够达到则对凑够的512bits进行一次处理*/
index = (unsigned int)((context->count[0] >> 3) & 0x3F);
/* Update number of bits *//*更新已有信息的bits长度*/
if((context->count[0] += ((UINT4)inputLen << 3)) < ((UINT4)inputLen << 3))
context->count[1]++;
context->count[1] += ((UINT4)inputLen >> 29);
/*计算已有的字节数长度还差多少字节可以 凑成64的整倍数*/
partLen = 64 – index;
/* Transform as many times as possible.
*/
/*如果当前输入的字节数 大于 已有字节数长度补足64字节整倍数所差的字节数*/
if(inputLen >= partLen)
{
/*用当前输入的内容把context->buffer的内容补足512bits*/
R_memcpy((POINTER)&context->buffer[index], (POINTER)input, partLen);
/*用基本函数对填充满的512bits(已经保存到context->buffer中) 做一次转换,转换结果保存到context->state中*/
MD5Transform(context->state, context->buffer);
/*
对当前输入的剩余字节做转换(如果剩余的字节<在输入的input缓冲区中>大于512bits的话 ),
转换结果保存到context->state中
*/
for(i = partLen; i + 63 < inputLen; i += 64)/*把i+63<inputlen改为i+64<=inputlen更容易理解*/
MD5Transform(context->state, &input[i]);
index = 0;
}
else
i = 0;
/* Buffer remaining input */
/*将输入缓冲区中的不足填充满512bits的剩余内容填充到context->buffer中,留待以后再作处理*/
R_memcpy((POINTER)&context->buffer[index], (POINTER)&input[i], inputLen-i);
}
/* MD5 finalization. Ends an MD5 message-digest operation, writing the
the message digest and zeroizing the context. */
/*获取加密 的最终结果
digest:保存最终的加密串
context:你前面初始化并填入了信息的md5结构
*/
void MD5Final (unsigned char digest[16],MD5_CTX *context)
{
unsigned char bits[8];
unsigned int index, padLen;
/* Save number of bits */
/*将要被转换的信息(所有的)的bits长度拷贝到bits中*/
Encode(bits, context->count, 8);
/* Pad out to 56 mod 64. */
/* 计算所有的bits长度的字节数的模64, 64bytes=512bits*/
index = (unsigned int)((context->count[0] >> 3) & 0x3f);
/*计算需要填充的字节数,padLen的取值范围在1-64之间*/
padLen = (index < 56) ? (56 – index) : (120 – index);
/*这一次函数调用绝对不会再导致MD5Transform的被调用,因为这一次不会填满512bits*/
MD5Update(context, PADDING, padLen);
/* Append length (before padding) */
/*补上原始信息的bits长度(bits长度固定的用64bits表示),这一次能够恰巧凑够512bits,不会多也不会少*/
MD5Update(context, bits, 8);
/* Store state in digest */
/*将最终的结果保存到digest中。ok,终于大功告成了*/
Encode(digest, context->state, 16);
/* Zeroize sensitive information. */
R_memset((POINTER)context, 0, sizeof(*context));
}
/* MD5 basic transformation. Transforms state based on block. */
/*
对512bits信息(即block缓冲区)进行一次处理,每次处理包括四轮
state[4]:md5结构中的state[4],用于保存对512bits信息加密的中间结果或者最终结果
block[64]:欲加密的512bits信息
*/
static void MD5Transform (UINT4 state[4], unsigned char block[64])
{
UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];
Decode(x, block, 64);
/* Round 1 */
FF(a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
FF(d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
FF(c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
FF(b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
FF(a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
FF(d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
FF(c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
FF(b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
FF(a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
FF(d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
/* Round 2 */
GG(a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
GG(d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
GG(b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
GG(a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
GG(b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
GG(a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
GG(c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
GG(b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
GG(d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
GG(c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
/* Round 3 */
HH(a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
HH(d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
HH(a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
HH(d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
HH(c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
HH(d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
HH(c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
HH(b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */
HH(a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
HH(b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
/* Round 4 */
II(a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
II(d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
II(b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
II(d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
II(b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
II(a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
II(c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
II(a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
II(c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
II(b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
/* Zeroize sensitive information. */
R_memset((POINTER)x, 0, sizeof(x));
}
/* Encodes input (UINT4) into output (unsigned char). Assumes len is
a multiple of 4. */
/*将4字节的整数copy到字符形式的缓冲区中
output:用于输出的字符缓冲区
input:欲转换的四字节的整数形式的数组
len:output缓冲区的长度,要求是4的整数倍
*/
static void Encode(unsigned char *output, UINT4 *input,unsigned int len)
{
unsigned int i, j;
for(i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (unsigned char)(input[i] & 0xff);
output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
}
}
/* Decodes input (unsigned char) into output (UINT4). Assumes len is
a multiple of 4. */
/*与上面的函数正好相反,这一个把字符形式的缓冲区中的数据copy到4字节的整数中(即以整数形式保存)
output:保存转换出的整数
input:欲转换的字符缓冲区
len:输入的字符缓冲区的长度,要求是4的整数倍
*/
static void Decode(UINT4 *output, unsigned char *input,unsigned int len)
{
unsigned int i, j;
for(i = 0, j = 0; j < len; i++, j += 4)
output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |
(((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
}
////////////////////////////////////////////////////////////////////////////////
// md5test.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include "string.h"
int main(int argc, char* argv[])
{
MD5_CTX md5;
MD5Init(&md5); //初始化用于md5加密的结构
unsigned char encrypt[200]; //存放于加密的信息
unsigned char decrypt[17]; //存放加密后的结果
scanf("%s",encrypt); //输入加密的字符
MD5Update(&md5,encrypt,strlen((char *)encrypt)); //对欲加密的字符进行加密
MD5Final(decrypt,&md5); //获得最终结果
printf("加密前:%sn加密后:",encrypt);
for(int i=0;i<16;i++)
printf("%2x ",decrypt[i]);
printf("nnn加密结束!n");
return 0;
}
/* 以上代码在vc6下编译通过,运行正常,能够得到正确的md5值 */
Read: 1573
条款1:尽量用const和inline而不用#define
条款2:尽量用<iostream>而不用<stdio.h>
条款3:尽量用new和delete而不用malloc和free
条款4:尽量使用c++风格的注释
条款5:对应的new和delete要采用相同的形式
条款6:析构函数里对指针成员调用delete
条款7:预先准备好内存不够的情况
条款8: 写operator new和operator delete时要遵循常规
条款9: 避免隐藏标准形式的new
条款10: 如果写了operator new就要同时写operator delete
条款11: 为需要动态分配内存的类声明一个拷贝构造函数和一个赋值操作符
条款12: 尽量使用初始化而不要在构造函数里赋值
条款13: 初始化列表中成员列出的顺序和它们在类中声明的顺序相同
条款14: 确定基类有虚析构函数
条款15: 让operator=返回*this的引用
条款16: 在operator=中对所有数据成员赋值
条款17: 在operator=中检查给自己赋值的情况
条款18: 争取使类的接口完整并且最小
条款19: 分清成员函数,非成员函数和友元函数
条款20: 避免public接口出现数据成员
条款21: 尽可能使用const
条款22: 尽量用“传引用”而不用“传值”
条款23: 必须返回一个对象时不要试图返回一个引用
条款24: 在函数重载和设定参数缺省值间慎重选择
条款25: 避免对指针和数字类型重载
条款26: 当心潜在的二义性
条款27: 如果不想使用隐式生成的函数就要显式地禁止它
条款28: 划分全局名字空间
条款29: 避免返回内部数据的句柄
条款30: 避免这样的成员函数:其返回值是指向成员的非const指针或引用,
但成员的访问级比这个函数要低
条款31: 千万不要返回局部对象的引用,也不要返回函数内部用new初始化
的指针的引用
条款32: 尽可能地推迟变量的定义
条款33: 明智地使用内联
条款34: 将文件间的编译依赖性降至最低
条款35: 使公有继承体现 "是一个" 的含义
条款36: 区分接口继承和实现继承
条款37: 决不要重新定义继承而来的非虚函数
条款38: 决不要重新定义继承而来的缺省参数值
条款39: 避免 "向下转换" 继承层次
条款40: 通过分层来体现 "有一个" 或 "用…来实现"
条款41: 区分继承和模板
条款42: 明智地使用私有继承
条款43: 明智地使用多继承
条款44: 说你想说的;理解你所说的
条款45: 弄清C++在幕后为你所写、所调用的函数
条款46: 宁可编译和链接时出错,也不要运行时出错
条款47: 确保非局部静态对象在使用前被初始化
条款48: 重视编译器警告
条款49: 熟悉标准库
条款50: 提高对C++的认识
Read: 795
/******************************************
* 使用方法….在命令行下运行
* lineamount.exe > 要输出行数的文件名
* 输入含有要统计的文件路径的文件
*
*******************************************/
#include "stdafx.h"
#include "stdio.h"
#include <iostream>
#include <string>
#include <fstream>
using namespace std;
int countline( string filepath );
int _tmain(int argc, _TCHAR* argv[])
{
string filepath;
cin>>filepath;
fstream filespath(filepath.c_str(),ios_base::in);
if(!filespath){
cout<<"读取文件失败!"<<endl;
} else {
int linecount = 0, temp = 0, line = 0;
string sep;
while( filespath >> filepath ){
temp = countline(filepath);
if (temp > 0){
cout<<temp<<"ttt"<<filepath<<endl;
line++;
linecount += temp;
} else {
cout<<"读取文件:"<<filepath<<"出错"<<endl;
}
}
cout<<"总行数:"<<linecount<<endl;
}
// cin>>filepath;
return 0;
}
int countline( string filepath )
{
fstream filespath(filepath.c_str(),ios_base::in);
if(!filespath){
return -1;
}
int linecount = 0;
string temp = "";
while( filespath >> temp ){
linecount++;
}
return linecount;
}
Read: 1133
准备:动态内存分配
一、为什么用动态内存分配
但我们未学习链表的时候,如果要存储数量比较多的同类型或同结构的数据的时候,总是使用一个数组。比如说我们要存储一个班级学生的某科分数,总是定义一个float型(存在0.5分)数组:
float score[30];
但是,在使用数组的时候,总有一个问题困扰着我们:数组应该有多大?
在很多的情况下,你并不能确定要使用多大的数组,比如上例,你可能并不知道该班级的学生的人数,那么你就要把数组定义得足够大。这样,你的程序在运行时就 申请了固定大小的你认为足够大的内存空间。即使你知道该班级的学生数,但是如果因为某种特殊原因人数有增加或者减少,你又必须重新去修改程序,扩大数组的 存储范围。这种分配固定大小的内存分配方法称之为静态内存分配。但是这种内存分配的方法存在比较严重的缺陷,特别是处理某些问题时:在大多数情况下会浪费 大量的内存空间,在少数情况下,当你定义的数组不够大时,可能引起下标越界错误,甚至导致严重后果。
那么有没有其它的方法来解决这样的外呢体呢?有,那就是动态内存分配。
所谓动态内存分配就是指在程序执行的过程中动态地分配或者回收存储空间的分配内存的方法。动态内存分配不象数组等静态内存分配方法那样需要预先分配存储空 间,而是由系统根据程序的需要即时分配,且分配的大小就是程序要求的大小。从以上动、静态内存分配比较可以知道动态内存分配相对于静态内存分配的特点:
1、不需要预先分配存储空间;
2、分配的空间可以根据程序的需要扩大或缩小。
二、如何实现动态内存分配及其管理
要实现根据程序的需要动态分配存储空间,就必须用到以下几个函数
1、malloc函数
malloc函数的原型为:
void *malloc (unsigned int size)
其作用是在内存的动态存储区中分配一个长度为size的连续空间。其参数是一个无符号整形数,返回值是一个指向所分配的连续存储域的起始地址的指针。还有 一点必须注意的是,当函数未能成功分配存储空间(如内存不足)就会返回一个NULL指针。所以在调用该函数时应该检测返回值是否为NULL并执行相应的操 作。
下例是一个动态分配的程序例题(1):
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
main()
{
int count,*array; /*count是一个计数器,array是一个整型指针,也可以理解为指向一个整型数组的首地址*/
if((array=(int *) malloc(10*sizeof(int)))==NULL)
{
printf("不能成功分配存储空间。");
exit(1);
}
for (count=0;count<10;count++) /*给数组赋值*/
array[count]=count;
for(count=0;count<10;count++) /*打印数组元素*/
printf("%2d",array[count]);
free(array);
}
上例中动态分配了10个整型存储区域,然后进行赋值并打印。例中if((array(int *) malloc(10*sizeof(int)))==NULL)语句可以分为以下几步:
1)分配10个整型的连续存储空间,并返回一个指向其起始地址的整型指针
2)把此整型指针地址赋给array
3)检测返回值是否为NULL
2、free函数
由于内存区域总是有限的,不能不限制地分配下去,而且一个程序要尽量节省资源,所以当所分配的内存区域不用时,就要释放它,以便其它的变量或者程序使用。这时我们就要用到free函数。
其函数原型是:
void free(void *p)
作用是释放指针p所指向的内存区。
其参数p必须是先前调用malloc函数或calloc函数(另一个动态分配存储区域的函数)时返回的指针。给free函数传递其它的值很可能造成死机或其它灾难性的后果。
注意:这里重要的是指针的值,而不是用来申请动态内存的指针本身。例:
int *p1,*p2;
p1=malloc(10*sizeof(int));
p2=p1;
……
free(p2) /*或者free(p2)*/
malloc返回值赋给p1,又把p1的值赋给p2,所以此时p1,p2都可作为free函数的参数。
malloc函数是对存储区域进行分配的。
free函数是释放已经不用的内存区域的。
所以由这两个函数就可以实现对内存区域进行动态分配并进行简单的管理了。
本节课后
问题:
1、free函数有什么用处?
2、stdio.h、stdlib.h、malloc.h 这三个头文件在程序例题(1)中起到了什么作用?
3、#include <stdio.h>和#incluce "stdio.h"有什么不同?
体会:
1、对照程序例题(1)体会“(array=(int *) malloc(10*sizeof(int)))==NULL”这一句的写法。
目的:
1、为什么要“动态分配内存”,如何做到“动态内存分配”。
Read: 807